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Abstract. The design of rural drinking water schemes consists of optimization of several network components

like pipes, tanks, pumps and valves. The sizing and configuration of these network configurations need to be

such that the water requirements are met while at the same time being cost efficient so as to be within

government norms. We developed the JalTantra system to design such water distribution networks. The Integer

Linear Program (ILP) model used in JalTantra and described in our previous work solved the problem optimally,

but took a significant amount of time for larger networks—an hour for a network with 100 nodes. In this current

work, we describe a series of three improvements of the model. We prove that these improvements result in

tighter models, i.e. the set of points of linear relaxation is strictly smaller than the linear relaxation for the initial

model. We test the series of three improved models along with the initial model over eight networks of various

sizes and show a distinct improvement in performance. The 100-node network now takes only 49 s to solve.

These changes have been implemented in JalTantra, resulting in a system that can solve the optimization of real

world rural drinking water networks in a matter of seconds. The JalTantra system is free for use, and is available

at https://www.cse.iitb.ac.in/jaltantra/.

Keywords. Water Distribution; Optimization; Integer Linear Program; Pipe Diameter Selection; Tank

Configuration Selection.

1. Introduction

Piped water distribution networks are used to transport

drinking water from common water sources to several

demand areas. Therefore, the design of such networks is an

important problem and has been studied in various forms

over several decades.

A typical piped water distribution network, as shown in

figure 1, consists of several infrastructure components like

pipes, tanks, pumps and valves. The location and sizing of

these components are determined as part of the network

design. The network consists of one or more sources of

water and several demand nodes. Each of these demand

nodes is described by its elevation, demand and minimum

pressure requirements. These nodes are connected by sev-

eral links along which pipes have to be laid out to transport

water from the source to each of the nodes. The network

layout can be looped/cyclic (typically urban) or branched/

acyclic (typically rural). As the water flows through the

pipes, the water pressure head reduces due to frictional

losses. This loss, commonly referred to as headloss,

depends on various factors like the diameter, roughness,

flow and length of the pipe.

The pipe diameter selection problem consists of assign-

ing pipe diameters to each link in the network. This

selection is to be made from a discrete set of commercially

available pipe diameters. Each link can be broken up into

multiple segments, each consisting of pipes of different

diameters or each link can be restricted to just one pipe

diameter. In the most basic problem formulation, other

components like tanks, pumps and valves are not

considered.

Several approaches to the problem have been considered

over the years. Early attempts at solving the pipe diameter

optimization consisted of deterministic techniques. Linear

Programming and its variants were some of the earliest

attempts at the problem [1]. Dynamic programming [2] was

also used to solve the network in stages rather than solving

it entirely at once. This technique however faces difficulty

in solving looped networks, since they are not amenable to

being split into different stages. Since the problem consists

of nonlinear equations, Non-Linear Programming (NLP)

[3] techniques were applied as well. They however deal

only with continuous diameters of pipes and thus require*For correspondence
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some form of rounding to determine diameters that are

available only in discrete sizes. To take care of this discrete

nature of pipes, Integer Linear Programming Techniques

(ILP) [4] were used. The advantage of these techniques is

their ability to provide non-ambiguous and consistent

results. However, due to the NP nature of the problem [5],

the computational demand rapidly increases with the size of

the network. As a result, lot of work in the past couple of

decades has focused on the use of meta-heuristic tech-

niques. These techniques employ heuristics to traverse

large search spaces and find near-optimal solutions. Several

approaches like genetic programming [6, 7], tabu search

[8], shuffled frogs [9], etc. fall in the wide umbrella of

meta-heuristics. These techniques however do not guaran-

tee optimal results since they do not cover the entire search

space and are stochastic in nature, i.e., they may provide

different results when repeated.

Networks, however, do not consist of pipes and nodes

exclusively. Other components like tanks, pumps and

valves are also part of any network design. Typically, rural

water networks are gravity fed, i.e. water from the source

flows downstream to the various demand nodes in the

network. The water head along the links decreases gradu-

ally due to headloss. For certain nodes, there might not be

enough water head in the system to ensure that their

demands are satisfied. In such cases, pumps are used to

provide additional head to the system. Depending on the

network configuration, pumps can be installed at the source

or at various points in the network, as per requirement.

Though the use of pumps might decrease the cost of pipes

(since pipes with smaller diameters would be required), and

in some cases their use may be unavoidable, they cause a

significant burden on the network operation since pumping

requires electric supply. Therefore, apart from a one-time

capital cost of infrastructure, there is now an additional

operational cost of running the water network.

Conversely, in certain networks the source might be at a

significantly higher elevation than the rest of the network.

This would result in excess pressure throughout the net-

work, which may cause pipes to burst. Therefore pipes with

higher pressure rating would need to be installed, causing a

significant increase in capital cost. In such cases, pressure-

reducing valves maybe employed to artificially reduce the

excess pressure in the system. Valves may also be installed

to restrict flow through certain pipes for maintenance and

operational purposes.

Tanks help provide buffer capacity to the network. Since

demand varies with time, tanks can be filled during low

demand periods and provide water in times of higher

demands. They can also be used to manage distribution of

water and act as intermediary sources. This is particularly

relevant in the case of areas where water is scarce. Tanks

are filled from the source and they in turn act as secondary

sources to the final demand nodes. The inflow and outflow

of the tanks are managed to ensure equitable and timely

distribution of water. In the absence of such a system,

upstream nodes with high pressures will draw majority of

the water from the source, leading to insufficient supply to

downstream nodes.

Pumps were the earliest component to be considered

during network optimization, in addition to the selection of

pipe diameters, although they were restricted to a single

pump at the source [10]. Tanks and valves were incorpo-

rated within meta-heuristic frameworks [6, 8, 9]. The net-

works considered in these studies are urban, where the role

of tanks is to act as buffers to be used during periods of

high demand. The choice to be made is the location, size

and height of the tank. The number of tanks to be installed

is fixed. But as mentioned earlier, water-scarce areas use

tanks as secondary sources rather than buffers. The demand

nodes are partitioned and allocated to individual tanks. The

source supplies water to the tanks in a primary network.

The tanks in turn supply water to their allocated nodes in

secondary networks. The cost of the scheme can vary sig-

nificantly depending upon the number of tanks and the

partition of nodes to these tanks.

Indian government bodies use software like WaterGems

[11] and BRANCH [12] to design water distribution net-

works [13–16]. They consist of only pipe diameter opti-

mization. Other components, i.e. pumps, tanks and valves,

are considered manually by the design engineer, relying on

his/her experience and intuition [14]. We have imple-

mented a network deign software, JalTantra, which

includes tanks, pumps and valves in addition to the pipe

diameter selection problem. JalTantra is a free-to-use web-

based application available at https://www.cse.iitb.ac.in/jal

tantra/. JalTantra has been officially adopted by the gov-

ernment of Maharashtra as a tool in the design process of

their drinking water schemes.

In [17] we presented the first version of JalTantra, which

included just the pipe diameter optimization for branched

networks (typical in the case of rural areas). It used a Linear

Programming model and thus solved the problem quickly

and optimally. This allowed even networks of a thousand

nodes to be solved in a couple of seconds. In [18], we

extended the model to include tanks. The added

Figure 1. Components of a typical Rural Piped Water Scheme.

Water is pumped from the source to the Water Treatment Plant

(WTP) and then to the Mass Balancing Reservoir (MBR). The

Primary Network then transports water from the MBR to the

tanks/Elevated Storage Reservoirs (ESRs), and then finally the

Secondary Network connects the tanks/ESRs to individual villages

(courtesy: CTARA, IITB).
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complexity, of considering both primary and secondary

networks simultaneously, required an ILP model. Although

still optimal in terms of cost, the time taken was signifi-

cantly worse. In the present work, we describe three sig-

nificant improvements that are made to the model. These

improvements reduced the time taken to optimize the larger

networks by orders of magnitude. The time taken to opti-

mize a 150-node network has gone from over 40 min to 5 s,

and a 200-node network, which could not be solved within

24 h now takes just 70 s.

The improvements consist of tightening the set of con-

straints used to describe the ILP model. Consider the

example shown in figure 2. The points represent the integer

points over which we are trying to optimize. The lines

represent the constraints that encompass those integer

points. When solving the linear point (LP) relaxation, the

entire set S is considered. By introducing the constraint e,

we can still capture the same integer points while cutting

off a part (S2) of the linear relaxation. Since a smaller

solution space is now considered while solving the LP

relaxation, this speeds up the optimization. For each of the

three improvements presented, we prove that the newer set

of constraints has a linear relaxation that is a strict subset of

the linear relaxation of the older set, while maintaining the

same set of integer points. In particular, for the tank con-

figuration improvement we show that the newer subset of

constraints is as tight as possible, i.e. the linear relaxation

has no fractional points. Since the overall model is com-

plex, while discussing each improvement, we consider only

a small subset of relevant constraints at a time.

The rest of the paper is structured as follows. In section 2

we describe the optimization problem formulation and the

initial model used to solve the problem. In sections 3–5, we

describe the three improvements. For each improvement,

we first repeat the relevant subset of constraints from the

initial model, then provide the new set of constraints of the

improved model and then finally prove that the improved

model is strictly better than the initial model. In section 6,

we describe an initial attempt at an alternative edge-based

approach to modelling the problem. The initial model and

the three post-improvement models were tested on eight

networks of varying sizes. Section 7 provides the perfor-

mance details of these tests. Finally, we provide our con-

cluding thoughts in section 8.

2. Initial model (model 1)

As discussed earlier, drinking water distribution networks

consist of various components. To optimize the cost of such

networks, several inputs must be considered, and for each

component, several parameters must be determined. We

first explicitly formulate the problem that we are attempting

to solve. Then, in section 2.2, we provide details of the

initial ILP model used to solve the problem.

2.1 Problem formulation

Inputs

• General: primary/secondary supply hours, minimum/

maximum headloss per km, maximum water speed

• Source node: head

• Node: elevation, water demand, minimum pressure

requirement

• Link: start/end node, length

• Existing pipes: start/end node, length, diameter, paral-

lel allowed, roughness

• Commercial pipes: diameter, roughness, cost per unit

length

• Tanks: maximum tank heights, tank capacity factor,

nodes that must/must not have tanks, capital cost table

• Pumps: minimum pump size, efficiency, design life-

time, capital/energy cost, discount/interest rate, pipes

that cannot have pumps

• Valves: location, pressure rating

Outputs

• Length and diameter of pipe segments for each link

• Partitioning the set of links into primary and secondary

network

• Location, height and size of tanks

• Set of nodes being served by each tank

• Location and power of pumps

Objective

• Minimize total capital cost (pipe ? tank ? pump) and

total energy cost (pump)

Constraints

• Pressure at each node must be at least the minimum

pressure specified

• Water demand must be met at each node

Figure 2. Constraints a, b, c and d describe the area S that

represents the linear relaxation of the set of 7 integer points in two

dimensions. Introducing the constraint e cuts off the area S2 from

the linear relaxation, while still maintaining the same set of integer

points.
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2.2 Model details

The pipe diameter selection in the model is represented by

the continuous variable lij, which represents the length of

the jth pipe diameter component of the ith link in the net-

work. This determines the capital cost of the pipes. The

tank allocation is represented by the binary variable snm,

which is one if the tank at the nth node in the network

provides water to the mth node in the network. The choice

of tank allocation variables fixes the total demand that each

tank serves, i.e. the variable dn. This in turn determines the

capital cost of the tanks. Apart from the cost considerations,

each node nmust also have its minimum pressure constraint

satisfied. The head at each node, hn, is dependent on the

headloss hli in the links of the network. This headloss

depends on the pipe variables lij and the tank variables snm
mentioned earlier. In addition, the introduction of

pumps/valves increases/decreases the headloss, respec-

tively. The details of the parameters, variables, objective

function and constraints of the model are as follows.

Parameters

• NL: number of links in the network

• NP: number of commercial pipe diameters

• Dj: diameter of jth commercial pipe diameter

• Cj: cost per unit length of jth commercial pipe diameter

• NN: number of nodes in the network

• NE: number of rows in the tank cost table

• Bk: base cost of the kth row of the tank cost table

• UNk: unit cost of the kth row of the tank cost table

• UPk: upper limit capacity for the kth row of the tank

cost table

• LOk: lower limit capacity for the kth row of the tank

cost table

• CP: capital cost of pumps per unit kW

• EP: energy cost of pumps per unit kWh

• DF: discount factor for the energy cost over the entire

scheme lifetime

• PH: number of hours of water supply in the primary

network

• SH: number of hours of water supply in the secondary

network

• Y: lifetime of scheme in years

• INFR: inflation rate

• INTR: interest rate

• Li: length of the ith link

• PRn: minimum pressure required at node n

• En: elevation of the nth node

• DEn: water demand of the nth node

• DE: total water demand of the network

• VHi: head reduction by valve in ith link

• HL
p
ij: headloss for the jth diameter of the ith link, if i is

part of the primary network

• HLsij: headloss for the jth diameter of the ith link, if i is

part of the secondary network

• FL
p
i : flow in ith link if i is part of the primary network

• FLsi : flow in ith link if i is part of the secondary network

• Rj: roughness of j
th commercial pipe diameter

• Tmin: minimum tank height allowed

• Tmax: maximum tank height allowed

• q: density of water

• g: acceleration due to gravity

• g: efficiency of pump

• PPmin: minimum pump power allowed

• PPmax: maximum pump power allowed

• An: set of nodes that are ancestors of node n in the

network

• Dn: set of nodes that are descendants of node n in the

network

• Cn: set of child nodes of node n in the network

• Pn: parent node of node n

• In: incoming link for node n

• On: set of outgoing links from node n

Continuous variables

• lij: length of the jth pipe component of the ith link

• l
p
ij: length of the jth pipe component of the ith link, if

link i is part of the primary network

• hli: total headloss across link i

• dn: total demand served by tank at node n

• znk: total demand served by tank at node n, if costed by

the kth row of the tank cost table

• pi: power of pump installed at link i

• p
p
i : power of pump installed at link i, if link i is part of

primary network

• psi : power of pump installed at link i, if link i is part of

secondary network

• phi: head provided by pump at link i

• hn: water head at node n

• tn: height of tank at node n

• h0ni: effective head provided to link i by its starting

node n

Binary variables

• enk: 1 if tank at nth node is costed by the kth row of tank

cost table, 0 otherwise

• fi: 1 if link i is part of the primary network, 0 if part of

the secondary network

• esni: 1 if source of water for link i is its immediate

upstream node n, 0 otherwise

• snm: 1 if tank at node n is source for node m, 0

otherwise

• pei: 1 if a pump is installed at link i, 0 otherwise.

Objective function: The objective function is simply the

sum of capital cost of the pipes, tanks, pumps and valves

used in the network. In addition, we also have the opera-

tional cost of the pumps. This operational cost is computed

as the present value of the total cost over the

scheme lifetime:
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Oð:Þ ¼
XNL

i¼1

XNP

j¼1

CjðDjÞlij þ
XNL

i¼1

CP� pi

þ
XNN

n¼1

XNE

k¼1

enkðBk þ UNkðdn � LOkÞÞ

þ EP� DF
XNL

i¼1

PH � p
p
i þ

XNL

i¼1

SH � psi

 !

whereDF ¼
XY

n¼1

1þ INFR

1þ INTR

� �n�1

:

ð1Þ

Constraints

• The total length of the pipe diameter segments must

equal the total link length:

Li ¼
XNP

j¼1

lij; i ¼ 1; . . .;NL: ð2Þ

• The pressure at each node must exceed the minimum

pressure required:

PRn � hn � ðEn þ tnÞ; n ¼ 1; . . .;NN: ð3Þ

• Across every link i there is headloss hli. This headloss

depends on the flow, length and diameter of the pipe

chosen. We use the Hazen–Williams equation [19] to

calculate the headloss. The headloss across a link also

depends on the pump and valve installed across it, if

any. The valves are input parameters to the model,

since they are manually fixed. The constraints related

to the pump head phi are described further below. The

flow through the link depends on whether the link is

part of the primary or secondary network:

hli ¼
XNP

j¼1

ðHLpijl
p
ij þ HLsijðlij � l

p
ijÞÞ � phi þ VHi;

i ¼ 1; . . .;NL:

ð4Þ

HL
p
ij ¼

10:68
FL

p
i

Rj

� �1:852

D4:87
j

;

i ¼ 1; . . .;NL; j ¼ 1; . . .;NP:

ð5Þ

HLsij ¼
10:68

FLsi
Rj

� �1:852

D4:87
j

;

i ¼ 1; . . .;NL; j ¼ 1; . . .;NP:

ð6Þ

FLsi ¼ FL
p
i

PH

SH
; i ¼ 1; . . .;NL: ð7Þ

• The head hn at each node n is calculated by the

effective head h0mi provided by its parent node m and

the headloss hli across the link connecting two nodes.

The effective head in turn depends on whether the link

i has the tank at the starting node m as its source. This

is represented by the binary variable esmi:

hn ¼ h0mi � hli;

n ¼ 1; . . .;NN; m ¼ Pn; i ¼ In:
ð8Þ

h0mi ¼ ðtm þ EmÞesmi þ hmð1� esmiÞ;
m ¼ 1; . . .;NN; i 2 Om:

ð9Þ

esmi ¼ smmð1� fiÞ;
m ¼ 1; . . .;NN; i 2 Om:

ð10Þ

• Next, we look at the constraints related to the tank

allocation. The first tank constraint is to ensure that

every tank height is between parameters Tmin and Tmax:

Tmin � tn � Tmax: ð11Þ

• We then look at the constraints that model allocation of

demand nodes to tanks; snm is 1 if tank at node n serves the

demand of node m. If a node n does not serve its own

demand, i.e. it is part of a secondary network, then all its

downstreamnodeswill alsobepart of a secondarynetwork.

smm � snn; n ¼ 1; . . .;NN; m 2 Dn: ð12Þ

• If a node n does not serve its own demand, then it

cannot serve the demand of its downstream nodes.

snm � snn; n ¼ 1; . . .;NN; m 2 Dn: ð13Þ

• For every node n, only one upstream node m can serve

its demand.

X

m2An[fng
smn ¼ 1; n ¼ 1; . . .;NN: ð14Þ

• The total demand dn served by node n is the sum of the

demands of the downstream nodes that it serves, i.e. all

m such that snm = 1:

dn ¼
X

m2Dn[fng
snm � DEm; n ¼ 1; . . .;NN: ð15Þ

• For a node n, its incoming pipe i will have primary

flow only if the node serves itself:

fi ¼ snn; n ¼ 1; . . .;NN; i ¼ In: ð16Þ

• If a node n serves node m, i.e. snm ¼ 1, each node o in

the path from n to m belongs to a secondary network

and therefore cannot serve itself.

snm � 1� soo; n ¼ 1; . . .;NN; m 2 Dn;

o 2 Dn \ Am:
ð17Þ

• Next, we have the constraints that relate the demand

that a tank serves to its cost variables enk. Note that we
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require znk in our objective function to replace the

nonlinear term enkdn:

znk ¼ enkdn; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð18Þ

• Since every tank can be costed using exactly one row

of the table, the sum of enk for a given n must be 1:

XNE

k¼1

enk ¼ 1; n ¼ 1; . . .;NN: ð19Þ

• Next we have constraints that make sure that the tank

capacity dn lies between the minimum and maximum

capacity of the selected row of the cost table:

for n ¼ 1; . . .;NN; k ¼ 1; . . .;NE

LOkenk � dn;
ð20Þ

DE � enk þ dn �UPk þ DE: ð21Þ

• Next, we look at constraints related to pumps. The

pump power pi relates to the pump head phi in the

following way:

pi ¼p
p
i þ psi ; i ¼ 1; . . .;NL; ð22Þ

p
p
i ¼

ðqg� FL
p
i � phiÞ

g
fi; i ¼ 1; . . .;NL; ð23Þ

psi ¼
ðqg�FLsi � phiÞ

g
ð1� fiÞ; i¼ 1; . . .;NL: ð24Þ

• Finally, the pump power for each pump must lie

between minimum and maximum allowed pump

power. This is implemented using the binary variable

pei:

PPmin � pei � pi �PPmax � pei; i ¼ 1; . . .;NL:

ð25Þ

Note that constraints (18), (23) and (24) contain nonlinear

terms. Each of these can be linearized since they are a

product of a binary variable and a continuous variable.

For the sake of brevity and clarity, the constraints that

perform the linearization are not mentioned here. This

completes the description of the initial model. Although

this model provides optimal results in terms of capital

cost, the time taken to solve networks rises rapidly with

increased network size. In the next three sections, we go

over three improvements made iteratively to this initial

model. For each improvement, we first describe the subset

of variables and constraints from the initial model that are

being considered. We next provide the improved set of

constraints. Finally, we prove how the linear relaxation of

the improved set is a strict subset of the linear relaxation

of the initial set.

3. Pipe headloss improvement

3.1 Initial model

We focus on a part of the model whose purpose is to

determine the pipe diameters chosen for each link in the

network. Each link can consist of multiple pipe diameters.

Also, each link can be part of the primary network or the

secondary network. The headloss across the link depends

on these choice of pipe diameters and whether it belongs to

the primary or secondary network. The set of variables and

parameters used for this purpose are defined as follows.

Consider a network of NL links. Let NP be the number of

pipe diameters available.

Variables

lij = length of the jth pipe diameter component of link i,

i ¼ 1; . . .;NL; j ¼ 1; . . .;NP

l
p
ij = length of the jth pipe diameter component of link i, if

link i is part of the primary network, i ¼ 1; . . .;NL,
j ¼ 1; . . .;NP
hli = headloss across link i, i ¼ 1; . . .;NL
fi = 1 of link i is part of the primary network, 0 if it is part

of the secondary network, i ¼ 1; . . .;NL.

Parameters

Li = length of link i, i ¼ 1; . . .;NL:

HL
p
ij = unit headloss for the jth pipe diameter component of

link i, if i is part of primary network,

i ¼ 1; . . .;NL; j ¼ 1; . . .;NP:

HLsij = unit headloss for the jth pipe diameter component of

link i, if i is part of secondary network,

i ¼ 1; . . .;NL; j ¼ 1; . . .;NP.

Constraints

The first constraint captures l
p
ij as a product of lij and fi:

l
p
ij ¼ lijfi; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP: ð26Þ

Equation (26) consists of a product of two variables, and is

therefore a nonlinear equation. Fortunately since fi is a

binary variable, we can linearize the equation using the

following inequalities:

0� l
p
ij; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð27Þ

l
p
ij � Lifi; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð28Þ

lij � Lið1� fiÞ� l
p
ij; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP;

ð29Þ

l
p
ij � lij; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP: ð30Þ

The sum of all pipe diameter components must equal the

link length:

XNP

j¼1

lij ¼ Li; i ¼ 1; . . .;NL: ð31Þ
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Next we have the equation for hli, which is the sum of all

headloss components contributed by the different pipe

diameter components of link i:

hli ¼
XNP

j¼1

Pijl
p
ij þ

XNP

j¼1

Sijðlij � l
p
ijÞ; i ¼ 1; . . .;NL: ð32Þ

Finally we have constraints that relate to the bounds for the

variables:

lij � 0; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð33Þ

fi 2
�
0; 1
�
; i ¼ 1; . . .;NL: ð34Þ

Since there exists a l
p
ij for each link and pipe diameter

combination in the network, a large number of linear

decompositions of equation (26) need to be done. In the

next section we show an improved model that has the same

feasible 0–1 set of values but with a tighter LP relaxation,

resulting in better performance.

3.2 Improved model (model 2)

In order to decompose the product of variables in (26), a

large number of constraints need to be added. This is

avoided in the new model by not explicitly defining l
p
ij.

Instead, its relation to lij and fi is implicit. In the next

section, we show that the new model is better.

Variables

We introduce one new variable, which is similar to l
p
ij, but

for the secondary network:

lsij = length of the jth pipe diameter component of link i, if

link i is part of the secondary network, and 0 if link i is part

of the primary network, i ¼ 1; . . .;NL; j ¼ 1; . . .;NP.
Constraints

The first constraint simply states that lij is the sum of the

primary and secondary components, i.e. l
p
ij and lsij,

respectively:

lij ¼ l
p
ij þ lsij; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP: ð35Þ

For a given link i, either all l
p
ij are 0 or all lsij are 0,

depending on the value of fi. And the sum of the non-zero

components must equal the length of the link Li. The first

two constraints of the new model capture this:

XNP

j¼1

l
p
ij ¼ Lifi; i ¼ 1; . . .;NL; ð36Þ

XNP

j¼1

lsij ¼ Lið1� fiÞ; i ¼ 1; . . .;NL: ð37Þ

Next we have the equation for hli, which is the sum of all

headloss components contributed by the different pipe

diameter components of link i. For the new model, we

equivalently use lsij instead of lij � l
p
ij due to

equation (35):

hli ¼
XNP

j¼1

Pijl
p
ij þ

XNP

j¼1

Sijl
s
ij; i ¼ 1; . . .;NL: ð38Þ

Finally, as before we have the bounds for the

variables:

lij � 0; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð33Þ

l
p
ij � 0; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð27Þ

lsij � 0; i ¼ 1; . . .;NL; j ¼ 1; . . .;NP; ð39Þ

fi 2
�
0; 1
�
; i ¼ 1; . . .;NL: ð34Þ

We now prove that the improved model is tighter than

the initial model, that is the linear relaxation of the

improved model is a strict subset of the linear relaxation

of the initial model. Let S1 be the set of points belonging

to the initial model and S2 be the set of points belonging

to the improved model. Let R1 and R2 be the set of

feasible points of the LP relaxations of S1 and S2,

respectively. Both R1 and R2 are defined by the same set

of constraints that describe the initial sets S1 and S2,

except for the constraint (34), which refers to the binary

nature of fi. Instead, the continuous bounds for fi is

defined as follows:

0� fi � 1; i ¼ 1; . . .;NL: ð40Þ

Proposition 1 R2 is a strict subset of R1, i.e. R2 � R1.

We prove that R2 is a strict subset of R1 in two steps.

First, we show that R2 is a subset of R1 and then we find a

point in R1 that is not in R2.

Consider a point P 2 R2. It satisfies the constraints (27),

(33) and (35)–(40). We prove that it also lies in R1 by

showing that it satisfies the constraints (27)–(33) and (40).

Constraints (27), (33) and (40) are trivially satisfied since

they are common for both sets.

For i ¼ 1; . . .;NL; j ¼ 1; . . .;NP

proving ð28Þ: l
p
ij � Lifi ð36Þ

XNP

j¼1

l
p
ij ¼ Lifi

� using l
p
ij � 0 ð27Þ

n o

l
p
ij � Lifi:

Hence satisfied.
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proving ð29Þ: lij � Lið1� fiÞ� l
p
ij

XNP

j¼1

lsij ¼ Lið1� fiÞ ð37Þ

) using lsij � 0 ð39Þ
n o

lsij � Lið1� fiÞ

� using lij ¼ l
p
ij þ lsij ð35Þ

n o

lij � l
p
ij � Lið1� fiÞ

� frearrangingg
lij � Lið1� fiÞ� l

p
ij:

Hence satisfied.

Proving ð30Þ : l
p
ij � lij

0� lsij ð39Þ

� using lij ¼ l
p
ij þ lsij ð35Þ

n o

0� lij � l
p
ij

� frearrangingg
l
p
ij � lij:

Hence satisfied.

Proving ð31Þ :
XNP

j¼1

lij ¼ Li

XNP

j¼1

l
p
ij ¼ Lifi ð36Þ

XNP

j¼1

lsij ¼ Lið1� fiÞ ð37Þ

� fadding equationsg
XNP

j¼1

ðlpij þ lsijÞ ¼ Lifi þ Lið1� fiÞ

� using lij ¼ l
p
ij þ lsij ð35Þ and simplifying

n o

XNP

j¼1

lij ¼ Li:

Hence satisfied.

Proving ð32Þ : hli ¼
XNP

j¼1

Pijl
p
ij þ

XNE

j¼1

Sijðlij � lsijÞ

hli ¼
XNP

j¼1

Pijl
p
ij þ

XNP

j¼1

Sijl
s
ij ð38Þ

� using lij ¼ l
p
ij þ lsij ð35Þ

n o

hli ¼
XNP

j¼1

Pijl
p
ij þ

XNE

j¼1

Sijðlij � lsijÞ:

Hence satisfied.

Therefore point P 2 R1, since it satisfies the constraints

(27)–(33) and (40). Therefore R2 � R1.

Next we find a point Q such that Q 2 R1 and Q 62 R2.

Take point Qðl; lp; ls; hl; f Þ ¼ ð½L=2; L=2	; [L / 2, L / 2],

[0, 0], L, 1 / 2). Here ðn;mÞ ¼ ð1; 2Þ and ðL;P; SÞ ¼
ðL; ½1; 1	; [1, 1]) where L� 0. Q 2 R1 since it satisfies the

constraints (27)–(33) and (40). Also, point Q 62 R2 since it

does not satisfy equation (37).

4. Tank cost improvement

4.1 Initial model

We next focus on a part of the model whose purpose is to

determine the capital cost of each tank in the network. The

tank cost is a piecewise-linear function. An example is

shown in figure 3. We need to determine which row in the

tank cost table the tank capacity falls in. Each row in the

tank cost table has minimum and maximum capacity

values. If the tank capacity is within these values, then

that row is used to compute the tank’s cost. In the

example considered, if a tank capacity of 5 l is to be built,

then the first row of the cost table will be used, since its

capacity range is 0–10. Binary variables are used to cap-

ture, for each tank, the row in the cost table that is chosen

to compute the cost. The set of variables and parameters

used for this purpose are defined as follows. Consider a

network of n locations. Let m be the number of linear

components of the piecewise-linear cost of construction of

a tank.

Variables

enk = 1 if the tank at location n is costed using the kth row

of the tank cost table, n ¼ 1; . . .;NN; k ¼ 1; . . .;NE.

Figure 3. Graph of the cost of a tank vs its capacity. It is a

concave piecewise-linear function.
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znk = capacity of the tank at location n if it is costed using

the kth row of the tank cost table, 0 otherwise,

n ¼ 1; . . .;NN; k ¼ 1; . . .;NE.
dn = capacity of tank at location n, n ¼ 1; . . .;NN.

Parameters

LOk = minimum capacity that the kth row of the tank cost

table can satisfy, k ¼ 1; . . .;NE.

UPk = maximum capacity that the kth row of the tank cost

table can satisfy, k ¼ 1; . . .;NE.
DE = value of the total water demand in the network,

where DE�UPk; k ¼ 1; . . .;NE.

Constraints

The first constraint relates the tank capacity corre-

sponding to the kth row as a product of the tank capacity

and the binary choice variable enk:

znk ¼ enkdn; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð41Þ

Since equation (41) consists of a product of two variables, it

is a nonlinear equation. We linearize the equation using the

following inequalities:

0� znk; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE; ð41:aÞ

znk �DEenk; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE; ð41:bÞ

dn � DEð1� enkÞ� znk; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE;

ð41:cÞ

znk � dn; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð41:dÞ

Since every tank can be costed using exactly one row, the

sum of enk for a given n must be 1:

XNE

k¼1

enk ¼ 1; n ¼ 1; . . .;NN: ð42Þ

Next, we have constraints that make sure that the tank

capacity dn lies between the minimum and maximum

capacity of the selected row of the cost table:

LOk � enk � dn; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE; ð43Þ

DE � enk þ dn �UPn þ DE; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE:

ð44Þ

Finally, we have constraints that relate to the bounds for the

variables:

DE� dn; n ¼ 1; . . .;NN; ð45Þ

dn � 0; n ¼ 1; . . .;NN; ð46Þ

enk 2
�
0; 1
�
; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð47Þ

Since there exists a znk for each tank and row of cost

table combination, a large number of linear decompositions

of equation (41) need to be done. This results in poor per-

formance of the model. In the next section we show an

improved model that has the same feasible 0–1 set of values

but with a tighter LP bound, resulting in better performance.

4.2 Improved model (model 3)

As discussed in the previous section, the main issue with the

old model is equation (41), where znk is expressed as a

product of two variables. In order to decompose the vari-

ables, a large number of constraints need to be added. This is

avoided in the new model by not explicitly defining znk.

Instead, its relation to enk and dn is implicit. In the next

section we first show that the new model is better in that it

has a tighter LP bound than the old model, and then we go on

to show that the LP for the new model has tight solutions.

The variables remain the same for the new model. The

first two inequalities of the model provide the bounds for

znk in terms of enk and the minimum (LOk) and maximum

(UPk) capacities for each row of the cost table:

LOkenk � znk; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE; ð48Þ

znk �UPkenk; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð49Þ

The next equation for the model remains unchanged; it

represents the fact that each row of the cost table is chosen

exactly once for each tank:

XNE

k¼1

enk ¼ 1; n ¼ 1; . . .;NN: ð42Þ

Next, we have a similar equation but this time related to the

variable znk. The sum of all znk values for a given tank must

equal dn:

XNE

k¼1

znk ¼ dn; n ¼ 1; . . .;NN: ð50Þ

In fact, along with the previous three equations of the

model, one can infer that exactly one of the znk values will

be nonzero for a specific tank and therefore will be equal to

dn. This therefore captures the nonlinear constraint that

equation (41) of the old model captured. The remaining

constraints relate to the bounds for the variables:

DE� dn; n ¼ 1; . . .;NN; ð45Þ

enk 2
�
0; 1
�
; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE; ð47Þ
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dn � 0; n ¼ 1; . . .;NN; ð46Þ

znk � 0; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð41:aÞ

Let S1 be the set of points belonging to the old model and

S2 be the set of points belonging to the new model. Let R1

and R2 be the set of feasible points of the LP relaxations of

S1 and S2, respectively.The continuous bounds for enk are

defined as follows:

0� enk � 1; n ¼ 1; . . .;NN; k ¼ 1; . . .;NE: ð51Þ

As in section 3, we prove that the LP relaxation of the new

model is tighter than the LP relaxation of the old model.

We then go on to show that R2 has no fractional corner

points, and thus cannot be tightened further.

Proposition 2 R2 is a strict subset of R1, i.e. R2 � R1.

As in Proposition 1, we prove that R2 is a strict subset of

R1 in two steps. First we show that R2 is a subset of R1, and

then we show that R2 is not equal to R1.

Consider a point P 2 R2. It satisfies the constraints

(41.a), (42) and (45)–(51). We prove that it also lies in R1

by showing that it satisfies the constraints (41.a)–(46) and

(51). Constraints (41.a), (42), (45), (46) and (51) are triv-

ially satisfied since they are common for both sets.

For n ¼ 1; . . .;NN; k ¼ 1; . . .;NE

proving ð41:bÞ : znk �DEenk

znk �UPkenk ð49Þ
) usingDE�UPk (definition)f g

znk �DEenk:

Hence satisfied.

Proving ð41:cÞ : dn � DEð1� enkÞ� znk

XNE

k0¼1

znk0 ¼ dn ð50Þ

� fsplitting sumg

znk þ
XNE

k0¼1;k0 6¼k

znk0 ¼ dn

� frearrangingg
XNE

k0¼1;k0 6¼k

znk0 ¼ dn � znk ð52Þ

enk þ
XNE

k0¼1;k0 6¼k

enk0 ¼ 1 ð42Þ

� frearrangingg

XNE

k0¼1;k0 6¼k

enk0 ¼ 1� enk; ð53Þ

znk �DEenk ð41:bÞ

) sum over k0f g
XNE

k0¼1;k0 6¼k

znk0 �DE
XNE

k0¼1;k0 6¼k

enk0

� fusing ð52Þ; ð53Þg
dn � znk �DEð1� enkÞ

� frearrangingg
dn � DEð1� enkÞ� znk:

Hence satisfied.

Proving ð41:dÞ : znk � dn

XNE

k¼1

znk ¼ dn; ð50Þ

) fusing 0� znk ð41:aÞg
znk � dn:

Hence satisfied.

Proving ð43Þ : LOk � enk � dn

LOk � enk � znk ð48Þ
) fusing znk � dn ð41:dÞg

LOk � enk � dn:

Hence satisfied.

Proving ð44Þ : dn þ DE � enk �UPk þ DE

dn � DEð1� enkÞ� znk ð41:cÞ
) fusing znk �UPk � enk ð49Þg

dn � DE þ DE � enk �UPk � enk

) fusing 0� enk � 1 ð51Þg
dn � DE þ DE � enk �UPk

� frearrangingg
dn þ DE � enk �UPk þ DE:

Hence satisfied.

Therefore point P 2 R1 and R2 � R1.

Next we find a point Q such that Q 2 R1 and Q 62 R2.

Take a point Qðz; e; dÞ ¼ ð½d; d	; ½1=2; 1=2	; dÞ. Here

ðn;mÞ ¼ ð1; 2Þ, ðLOk;UPk;DEÞ ¼ ð½0; d	; ½d; 2d	; 2dÞ where
d� 0. Q 2 R1 since it satisfies the constraints (41.a)–(46)

and (51). Also point Q 62 R2 since it violates equation (50).

We next show that in fact R2 has the tightest relaxation

possible by showing that a point with fraction value for enk
will never be a corner point.

Proposition 3 If point P 2 R2 has a fractional value for

enk, P cannot be a corner point of R2.
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Proof Consider a point Pðz; e; dÞ 2 R2 with at least one

fractional value for enk, i.e. 0\en0k0\1 for some n0, k0. Let
en0k0 ¼ t. Construct another point P1 that has the same com-

ponents of P for n 6¼ n0. For n ¼ n0, take (z, e, d) as follows:

For k ¼ 1; . . .;NE

zn0k0 ¼ 0

zn0k ¼
zPn0k
1� t

; for k 6¼ k0

en0k0 ¼ 0

en0k ¼
ePn0k
1� t

; for k 6¼ k0

dk0 ¼
dPn0 � zPn0k0

1� t
:

Here, zPn0k0 , e
P
n0k0 , d

P
n0 are the corresponding values of point

P. We show that P1 2 R2 since it satisfies all the

constraints:

48:

LOk0 � en0k0 � zn0k0

� LOk0 � 0� 0 ðdefinitionÞ
LOk � en0k � zn0k; k 6¼ k0

� LOk

ePn0k
1� t

� zPn0k
1� t

; k 6¼ k0 ðdefinitionÞ

� LOk � ePn0k � zPn0k; k 6¼ k0 ð0\t\1Þ:
Satisfied sinceP 2 R2:

49:

zn0k0 �UPk0 � en0k0

� 0�UPk0 � 0 ðdefinitionÞ
zn0k �UPk � en0k; k 6¼ k0

� zPn0k
1� t

�UPk

ePn0k
1� t

; k 6¼ k0 ðdefinitionÞ

� zPn0k �UPk � ePn0k; k 6¼ k0 ð0\t\1Þ:
Satisfied sinceP 2 R2:

42:
PNE

k¼1 en0k

¼ 0þ
PNE

k¼1;k 6¼k0 en0k ðsplitting sumÞ

¼
PNE

k¼1;k 6¼k0
ePn0k
1� t

ðdefinitionÞ

¼ 1� ePn0k0

1� t

PNE
k¼1 e

P
n0k ¼ 1

� 	

¼ 1� t

1� t
ðdefinitionÞ

¼ 1 ð0\t\1Þ:
50:

PNE
k¼1 zn0k

¼ 0þ
PNE

k¼1;k 6¼k0 zn0k ðsplitting sumÞ

¼
PNE

k¼1;k 6¼k0
zPn0k
1� t

ðdefinitionÞ

¼ dPn0 � ePn0k0

1� t

¼ dn0

51:

XNE

k¼1

ePn0k ¼ 1

� ePn0k0 þ
XNE

k¼1;k 6¼k0

ePn0k ¼ 1

� t þ
XNE

k¼1;k 6¼k0

ePn0k ¼ 1

�
XNE

k¼1;k 6¼k0

ePn0k ¼ 1� t

� 0� ePn0k � 1� t; k 6¼ k0

� 0� ePn0k
1� t

�1; k 6¼ k0 ð1� t[ 0Þ

� 0� en0k� 1; k 6¼ k0 ðdefinitionÞ:

46:
PNE

k¼1 z
P
n0k ¼ dPn0 ðP 2 R2Þ

� zPn0k0 þ
PNE

k¼1;k 6¼k0 z
P
n0k ¼ dPn0 ðsplitting sumÞ

�
PNE

k¼1;k 6¼k0 z
P
n0k ¼ dPn0 � zPn0k0 ðrearrangingÞ

� dPn0 � zPn0k0 � 0 ðzPn0k� 0Þ

� dPn0 � zPn0k0

1� t
�0 ð1� t[ 0Þ

� dn0 � 0 ðdefinitionÞ:

41:a :

zPn0k � 0; k 6¼ k0 ðP 2 R2Þ

� zPn0k
1� t

� 0; k 6¼ k0 ð1� t[ 0Þ

� zn0k� 0; k 6¼ k0 ðdefinitionÞ:

Therefore P1 2 R2.

Similar to P1, construct point P2 having the same

components as P for n 6¼ n0. For n ¼ n0 take (z, e, d) as

follows:

for k ¼ 1; . . .;NE

zn0k0 ¼
zPn0k0

t

zn0k ¼ 0 for k 6¼ k0

en0k0 ¼ 1

en0k ¼ 0 for k 6¼ k0

dn0 ¼
zPn0k0

t
:
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As before, zPn0k0 , e
P
n0k0 , d

P
n0 are the corresponding values of

point P. With similar arguments as before, we see that

P2 2 R2. Finally

P1 ¼
zPn0k
1� t

; 0

� �
;

ePn0k
1� t

; 0

� �
;
d0Pi � zPn0k0

1� t

� �

P2 ¼ 0;
zPn0k0

t

� �
; ð0; 1Þ; z

P
n0k0

t

� �

) P1ð1� tÞ þ P2t ¼ zPn0k; z
P
n0k0

� 	
; ePn0k; t
� 	

; d0Pi
� 	

¼ P:

Since P can be represented as a linear combination of two

other points belonging to R2, P cannot be a corner point of

R2. This implies that LP relaxation (R2) of the new model

will provide only integer solutions. Therefore, the new

model has a tight relaxation. h

5. Tank configuration improvement

For a given network of nodes and links, one aspect of the

problem is to determine the location of tanks and the set of

downstream nodes that are to be served by each tank. We

need a set of constraints to model a valid network config-

uration. For a given branched network layout with a single

source, a valid network configuration is one in which

1. Each node needs to be provided water, by exactly one of

its ancestors (including itself).

2. If a node n provides water to itself, i.e. it has a tank, only

then can it provide water to its descendants.

3. If a node n gets water from another tank, then all its

descendants cannot get water from themselves.

4. If node n provides water to one of its descendants k, then

the nodes along the path connecting them cannot serve

themselves.

In the following section we repeat the set of constraints that

model such a network as laid out in section 2. We then

show that the model is not tight, i.e. its linear relaxation is

not guaranteed to have integral corner points. In section 5.2,

we then describe an improved model and prove its tight-

ness. In section 6, we describe an alternate edge-based

approach to model the network.

5.1 Initial model

Consider a tree network of n nodes.

Parameters

An = set of ancestor nodes of node n, n ¼ 1; . . .;NN.
Dn = set of descendant nodes of node n, n ¼ 1; . . .;NN.
Cn = set of child nodes of node n, n ¼ 1; . . .;NN.
Pn = parent node of node n, n ¼ 1; . . .;NN.

Variables

snm = 1 if tank at nth node serves the demand of mth

node, n ¼ 1; . . .;NN, m 2 Dn [ fng.
Constraints

We can use the following set of constraints to describe

the set of valid network configurations as described

earlier:

smm � snn; n ¼ 1; . . .;NN; m 2 Dn; ð54Þ

snm � snn; n ¼ 1; . . .;NN; m 2 Dn; ð55Þ
X

m

smn ¼ 1; n ¼ 1; . . .;NN; m 2 An [ fng; ð56Þ

snm � 1� soo; n ¼ 1; . . .;NN; m 2 Dn; o 2 Dn [ Am;

ð57Þ

snm 2
�
0; 1
�
; n ¼ 1; . . .;NN; m 2 Dn [ fng: ð58Þ

Proposition 4 The linear relaxation of S is not tight.

Proof Let the linear relaxation of set S be R. Instead of

constraint (58), we will have the following constraint:

0� snm � 1; n ¼ 1; . . .;NN; m 2 Dn [ fng: ð59Þ

Consider a small network of 3 nodeswith node 1 as root, node

2 as child of node 1 and node 3 as child of node 2. For a point

to belong to R, the following constraints must be met:

s22 � s11; ð54:aÞ

s33 � s11; ð54:bÞ

s33 � s22; ð54:cÞ

s12 � s11; ð55:aÞ

s13 � s11; ð55:bÞ

s23 � s22; ð55:cÞ

s11 ¼ 1; ð56:aÞ

s12 þ s22 ¼ 1; ð56:bÞ

s13 þ s23 þ s33 ¼ 1; ð56:cÞ

s13 � 1� s22; ð57:aÞ

0� s11; s12; s13; s22; s23; s33 � 1: ð59Þ

Since s11 ¼ 1, we replace its value in the constraints and

replace repeating constraints to get the following set:

s33 � s22; ð54:cÞ
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s23 � s22; ð55:cÞ

s11 ¼ 1; ð56:aÞ

s12 þ s22 ¼ 1; ð56:bÞ

s13 þ s23 þ s33 ¼ 1; ð56:cÞ

s13 � 1� s22; ð57:aÞ

0� s12; s13; s22; s23; s33 � 1: ð59Þ

Consider a point P defined as

Pfs11; s12; s13; s22; s23; s33g ¼ f1; 1
2
; 0; 1

2
; 1
2
; 1
2
g. Since it

satisfies all the constraints, P 2 R. We now show that P

cannot be described as a linear combination of two distinct

points that belong to R.

Consider two points Q1;Q2 2 R such that

P ¼ tQ1 þ ð1� tÞQ2; 0\t\1

sQ1

11 ¼ sQ2

11 ¼ 1 f56:ag
sP13 ¼ 0 fdefinitiong

) sQ1

13 ¼ sQ2

13 ¼ 0 f59:cg
ð60Þ

s33 þ s23 � 2s22 fadding 54:cand55:cg
) 1� s

Q1

13 � 2s
Q1

22 f56:cg
) 1

2
� s

Q1

22 f60g

) 1

2
� sQ2

22 fSimilarlyg

) sQ1

22 ¼ sQ2

22 ¼ 1

2
fsP22 ¼

1

2
g

s12 þ s22 ¼ 1 f56:bg
) sQ1

12 ¼ sQ2

12 ¼ 1

2
f61g

s33 � s22 f54:cg
) s

Q1

33 �
1

2
f61g

s23 � s22 f55:cg
) s

Q1

23 �
1

2
f61g

) sQ1

23 ¼ sQ1

33 ¼ 1

2
f56:cg

) sQ2

23 ¼ sQ2

33 ¼ 1

2
fsimilarlyg:

ð61Þ

Therefore P ¼ Q1 ¼ Q2. Since P cannot be expressed as a

linear combination of two distinct points, P is a corner point

of R. Since P contains non-integral values for snm, relax-

ation R is not tight. h

5.2 Improved model (model 4)

A new model is proposed; although it maintains the same

structure as that of the initial model, it does so using tighter

constraints. The primary insight about the structure is

expressed in the second constraint mentioned here. A node

n serves its child m if and only if it serves all the nodes

downstream of m. Consider set S2 defined by the following

set of constraints:

X

m

smn ¼ 1; n ¼ 1; . . .;NN; m 2 An [ fng; ð56Þ

snm ¼ snk; n ¼ 1; . . .;NN; m 2 Cn; k 2 Dm; ð62Þ

snm 2
�
0; 1
�
; n ¼ 1; . . .;NN; m 2 Dn [ fng: ð58Þ

Proposition 5 The linear relaxation of S2 is tight.

Proof Let the linear relaxation of set S2 be R2. Instead of

constraint (58), we will have the following constraint:

0� snm � 1; n ¼ 1; . . .;NN; m 2 Dn [ fng: ð63Þ

We will show that R2 is tight by showing that any point

P with a non-integer component can be expressed as a

linear combination of two distinct points from R2.

Consider a point P 2 R2 with 0\sn0n0 ¼ t\1 for some

n0. Let n0 be the first such node in the path from root. h

Claim 5.1 snn ¼ 1; n 2 An0 :

Proof snn cannot be fractional since n0 is the first such

node from root by definition. Assume snn ¼ 0 for some

n 2 An0 .

Let Enn0 ¼ ðDn [ fngÞ \ ðA0
n [ fn0gÞ.

snn ¼ 0

� using
P

m smn ¼ 1 ð56Þ
� �

P
m smn ¼ 1; m 2 An

cr
P

m smn0 ¼ 1; m 2 A0
n [ fn0g

� fsplitting sumgP
m smn0 þ

P
k skn0 ¼ 1; m 2 An; k 2 Enn0

� using snm ¼ snk ð62Þf gP
m smn þ

P
k skn0 ¼ 1; m 2 An; k 2 Enn0

� using
P

m smn ¼ 1 from above
� �

1þ
P

k skn0 ¼ 1; k 2 Enn0

� fsimplifyinggP
k skn0 ¼ 0; k 2 Enn0

� fusing 0� snm � 1 ð63Þg
skn0 ¼ 0; k 2 Enn0

) fsince n0 2 Enn0 g
sn0n0 ¼ 0:

However, this is a contradiction since we know that sn0n0 is

fractional. Therefore, snn cannot be fractional and it cannot

be 0.

snn ¼ 1; n 2 An0 : ð64Þ

h

Claim 5.2 snm ¼ 0; n 2 Ap0 ; m 2 Dn; p0 ¼ Pn0 :

Sådhanå          (2019) 44:239 Page 13 of 19   239 



Proof

smm ¼ 1; m 2 An0

� fusing
X

m

smn ¼ 1 ð56Þg

snm ¼ 0; n 2 Ap0 ; m 2 An0 ; j 2 Dn; p0 ¼ Pn0

� fusing snm ¼ snk ð62Þg
snm ¼ 0; n 2 Ap0 ; m 2 Di; p0 ¼ Pn0 :

ð65Þ

h

Consider a point Q1 with sn0n0 ¼ 0:

snm ¼ sPnm; m 62 ðAn0 [ Dn0 [ fn0gÞ ð66Þ

snm ¼ sPnm
1� t

; n 2 An0 ; j 2 Dn ð67Þ

snm ¼ 0; n 2 ðDn0 [ fn0gÞ;m 2 Dn: ð68Þ

Claim 5.3 Point Q1 2 R2:

Proof We prove that point Q1 belongs to R2 by showing

that it satisfies the constraints (56), (62) and (63).

For nodes that are not downstream or upstream of n0, snm
values are the same as that of point P. Therefore, they

satisfy the constraints since P belongs to R2.

For the rest of the nodes:

for n 2 An0 :

proving ð56Þ :
X

m

smn ¼ 1

fusing snn ¼ 1 ð64Þg
snn ¼ 1; n 2 An0

fusing snm ¼ 0 ð65Þg
smn ¼ 0; n 2 An0 ; m 2 An

� fsumming over mg
X

m

smn ¼ 1; n 2 An0 :

Hence satisfied.

Proving ð62Þ : snm ¼ snk

fusing snm ¼ snk ð62Þg
sPnm ¼ sPnk; n 2 An0 ; m 2 Cn; k 2 Dm

� fdividing by ð1� tÞ since t 6¼ 1g
sPnm
1� t

¼ sPnk
1� t

; n 2 An0 ; m 2 Cn; k 2 Dm

� fusing snm ¼ sPnm
1� t

ð67Þg

snm ¼ snk; n 2 An0 ; m 2 Cn; k 2 Dm:

Hence satisfied.

Proving ð63Þ : 0� smn0 � 1

using
X

m

smn ¼ 1 ð56Þ
( )

X

m

sPmn0 ¼ 1; m 2 An0 [ fn0g

� fsplitting sumg
X

m

sPmn0 þ sPn0n0 ¼ 1; m 2 An0

� fusing sPn0n0 ¼ tg
X

m

sPmn0 ¼ 1� t; m 2 An0

� fusing sPmn0 � 0 ð63Þg
0� sPmn0 � 1� t; m 2 An0

� fdividing by ð1� tÞ since t 6¼ 1g

0� sPmn0

1� t
� 1; m 2 An0

� using snm ¼ sPnm
1� t

ð67Þ

 �

0� smn0 � 1; m 2 An0 :

Hence satisfied.

For n 2 Dn0 [ fn0g, proving (56):

X

m

smn ¼ 1

fusing
X

m

smn ¼ 1 ð56Þg
X

m

sPmn0 ¼ 1; m 2 An0 [ fm0g

fusing snm ¼ 0 ð65Þg
sPkn0 þ sPn0n0 ¼ 1; k ¼ Pn0

� fusing sPn0n0 ¼ tg
sPkn0 ¼ 1� t; k ¼ Pn0

� fusing snm ¼ sPnm
1� t

ð67Þg

skn0 ¼ 1; k ¼ Pn0

� fusing snm ¼ 0 ð68Þg
X

m

smn ¼ 1; n 2 Dn0 [ fn0g;m 2 An:

Hence satisfied.

Proving ð62Þ :
snm ¼ snk

fusing snm ¼ 0 ð68Þg
snm ¼ 0; n 2 Dn0 [ fn0g;m 2 Dn

�
snm ¼ snk; n 2 Dn0 [ fn0g;m 2 Dn; k 2 Cn:
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Hence satisfied.

Proving ð63Þ :
0� snm � 1

fusing snm ¼ 0 ð68Þg
snm ¼ 0; n 2 Dn0 [ fn0g;m 2 Dn:

Hence satisfied.

Therefore point Q1 2 R2. h

Similarly, consider point Q2 with sn0n0 ¼ 1:

snm ¼ sPnm; m 62 ðAn0 [ Dn0 [ fn0gÞ ð69Þ

snm ¼ 0; n 2 An0 ;m 2 Dn ð70Þ

snm ¼ sPnm
t
; n 2 ðDn0 [ fn0gÞ;m 2 Dn [ fng: ð71Þ

Claim 5.4 Point Q2 2 R2:

Using a similar argument as before, we can prove that

point Q2 belongs to R2 by showing that it satisfies the

constraints (56), (62) and (63).

Claim 5.5 P is a linear combination of points Q1 and Q2,

i.e. P ¼ ð1� tÞQ1 þ tQ2:

Proof For m 62 ðAn0 [ Dn0 [ fn0gÞ:

fusing sPnm ¼ sQ1

nm ð66Þ and sPnm ¼ sQ2

nm ð69Þg
sPnm ¼ sQ1

nm ¼ sQ2

nm

)
sPnm ¼ ð1� tÞsQ1

nm þ tsQ2

nm:

For n 2 An0 ;m 2 Dn:

sQ1

nm ¼ sPnm
1� t

sQ2

nm ¼ 0

)
sPnm ¼ ð1� tÞsQ1

nm þ tsQ2

nm:

For n 2 Dn0 ;m 2 Dn:

sQ1

nm ¼ 0

sQ2
nm ¼ sPnm

t

)
sPnm ¼ ð1� tÞsQ1

nm þ tsQ2

nm:

Therefore, P is a linear combination of points Q1 and Q2.h

Since any general point P with a fractional component

can be expressed as a linear combination of two other

points in the set R2, it implies that such a point P cannot be

a corner point and therefore set R2 is tight. h

This concludes the discussion on the three improvements

made to the initial ILP model. Experimental results of the

performance of the model after each improvement are

presented in section 7. Although we have shown the

tightness of various subsets of the improved model, the

overall set of constraints of the model is still not tight. As

such, there remains room for further improvements to the

model. In the next section, we describe an initial attempt at

an alternative approach to the problem. Instead of using

node variables sij to partition the primary and secondary

network, variables based purely on edges are used.

6. Edge-based model

An alternative approach to the node-based representation of

the network is to have an edge-based representation. Here,

instead of the focus being which tank serves which node,

the focus is on which pipes in the network are part of the

primary network and which pipes are part of the secondary

network. Consider a tree network of NE edges.

Parameters

Ci = set of pipes that are immediately downstream of pipe

i; i ¼ 1; . . .;NE:
Ui = set of pipes that are upstream of pipe

i; i ¼ 1; . . .;NE:
Di = set of pipes that are downstream of pipe

i; i ¼ 1; . . .;NE:
DS = set of pipes that are immediately downstream of the

source.

Variables:

fi = 1 if ith edge belongs to the primary network and = 0 if

ith edge belongs to the secondary network, i ¼ 1; . . .; e:

The primary network connects the source to the tanks, and

the secondary network connects the tanks to downstream

nodes. Therefore, pipes starting from the source must

belong to the primary network. Also, secondary pipes must

be downstream of the primary pipes. Once a pipe is sec-

ondary, any pipes downstream can no longer be primary.

We can use the following set of constraints to describe the

set S3 of valid network configurations:

fi ¼ 1; i 2 DS; ð72Þ

fj � fi; i ¼ 1; . . .;NE; j 2 Ci; ð73Þ

fi 2
�
0; 1
�
; i ¼ 1; . . .;NE: ð74Þ

Proposition 6 The linear relaxation of S3 is tight.

Proof Let the relaxation of set S3 be R3. Instead of con-

straint (74), we will have the following constraint:

0� fi � 1; i ¼ 1; . . .;NE: ð75Þ
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We will show that R3 is tight by showing that any point

P with a non-integer component can be expressed as a

combination of two distinct points from R3. h

Consider a point P 2 R3 with 0\fi ¼ t\1 for some i0.
Let i0 be the first such edge in the path from source.

Claim 6.1 fi ¼ 1; i 2 Ui0 .

Proof fi cannot be fractional since i0 is the first such edge

from the source by definition. If fi ¼ 0, then by (73) for all its

downstream edges j, fi ¼ 0. However, i0 is downstream of

i and fi0 ¼ t 6¼ 0. Therefore, fi cannot be fractional and it

cannot be 0.

fi ¼ 1; i 2 Ui0 : ð76Þ

h

Consider a point Q1 with fi0 ¼ 0:

fi ¼ f Pi ; i 62 ðDi0 [ fi0gÞ ð77Þ

fi ¼ 0; i 2 ðDi0 [ fi0gÞ: ð78Þ

Claim 6.2 Point Q1 2 R3.

Proof For all the edges not downstream of i0, constraints
(72), (73) and (75) are satisfied since the values are same as

point P and P 2 R3. Setting fi ¼ 0 for all downstream i also

maintains the constraints trivially. Therefore point Q 2 R3.

h

Similarly consider point Q2 with fi0 ¼ 1:

fi ¼ f Pi ; i 62 ðDi0 [ fi0gÞ ð79Þ

fi ¼
f Pi
t
; i 2 ðDi0 [ fi0gÞ ð80Þ

Claim 6.3 Point Q2 2 R3.

Proof We prove that point Q2 belongs to R3 by showing it

satisfies the constraints (72), (73) and (75). For edges that

are not downstream of i0, fi values are same as that of point

P. Therefore they satisfy the constraints since P 2 R3. For

the rest of the edges:

For i 2 ðDi0 [ fi0gÞ: (72) is trivially true since i0 (and its

downstream edges) cannot be connected to the source since

for point P, fi 6¼ 0.

Proving ð73Þ : fj � fi

fusing f Pj � f Pi ð73Þg
f Pj � f Pi ; i 2 ðDi0 [ fi0gÞ; j 2 Ci

� fdividing by t since t 6¼ 0g
f Pj

t
� f Pi

t
; i 2 ðDi0 [ fi0gÞ; j 2 Ci

� fusing fi ¼
f Pi
t
ð80Þg

fj � fi; i 2 ðDi0 [ fi0gÞ; j 2 Ci:

Hence satisfied.

Proving ð75Þ : 0� fi � 1

fusing f Pi � f Pi0 ð73Þ and 0� f Pi ð75Þg
0� f Pi � f Pi0 i 2 ðDi0 [ fi0gÞ

� fusing f Pi ¼ tg
0� f Pi � t i 2 ðDi0 [ fi0gÞ

� fdividing by t since t 6¼ 0g

0� f Pi
t
� 1 i 2 ðDi0 [ fi0gÞ

� fusing fi ¼
f Pi
t
ð80Þg

0� fi � 1 i 2 ðDi0 [ fi0gÞ:
Hence satisfied.

Therefore point Q2 2 R3. h

Claim 6.4 P is a linear combination of points Q1 and Q2

i.e. P ¼ ð1� tÞQ1 þ tQ2

Proof For i 62 ðDi0 [ fi0gÞ:

f Pi ¼ f Q1

i ¼ f Q2

i f77; 79g
)

f Pi ¼ ð1� tÞf Q1

i þ tf Q2

i

For i 2 ðDi0 [ fi0gÞ:

f Q1

i ¼ 0 f78g

f Q2

i ¼ f Pi
t

f80g
)

f Pi ¼ ð1� tÞf Q1

i þ tf
Q2

i :

Therefore P is a linear combination of points Q1 and Q2 h

Since any general point P with a fractional component

can be expressed as a linear combination of two other

points in the set R3, it implies that such a point P cannot be

a corner point and therefore relaxation R3 is tight.

h

The performance of the edge-based model is worse than

that of model 4. Although we prove that the LP relaxation of

the set of constraints described by S3 is tight, the LP relax-

ation objective for the overall model is worse. This is due to

changes in other constraints of the model, which are required

since in this model only edge-based variables are considered.

7. Computational results

The three pipe cost/tank cost/tank allocation improvements

were applied sequentially to the initial model (model 1) to

give model 2/model 3/model 4, respectively. These four
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models were tested over eight different networks of varying

sizes in order to test their performance and scalability.

• Real world networks: Three of the networks—Khardi,

Shahpur and Mokhada—are real life networks from

Maharashtra state in India. These regions consist of

tribal villages that regularly face extreme water stress

during summer months and as a result have to be

provided water using tankers. Detailed information

regarding the networks can be found at [13] and [14].

Ranges for the node and link properties are as follows.

– Number of children nodes: 1–3.

– Elevation (in metres): 202–470.

– Demand (in l/second): 0.48–9.24.

– Length of links (in metres): 187–9911.

• Synthetic networks: The other five networks are

artificially created to test the performance of the

models across different network sizes (10–200). Each

of them is a randomly generated branched network.

Ranges for the node and link properties are as follows.

– Number of children nodes: 1–5.

– Elevation (in metres): 100–300.

– Demand (in litres per second): 0.01–5.

– Length of links (in metres): 500–5000.

For all four models, the problem statement remains the

same—to optimize the total pipe and tank cost of the network.

The numbers of binary and continuous variables scale with the

size of the network. Since all four models solve the problem

optimally, the final capital cost of the pipes and tanks is the

same. The performance of eachmodel is measured in terms of

three metrics: the total time taken in seconds, the size of the

branch and bound tree and the objective value of the LP

relaxation. The tests were run on an Intel Core i5-4210U @

1.7-GHz machine with 4-GB RAM and running a 64-bit

Windows 8.1 operating system. Table 1 summarizes the

performance of the models. We observe that for each of the

eight networks, the time taken improves with each model,

resulting in model 4 providing the best performance. Typi-

cally, the time taken scales with the size of the network.

However, this need not always be the case. For example,

although gen50 has more nodes (50 nodes) thanMokhada (37

nodes), it is solved in lesser amount of time. This is because

apart from the number of nodes being a factor, the network

configuration also matters while solving the model.

8. Conclusion

In the present work we looked at the cost optimization of

rural drinking water schemes. These schemes consist of

several network components like pipes, tanks, pumps and

valves. We first describe an initial ILP model that was used

to solve the optimization. Although optimal, the model took

a significant amount of time for larger networks—45 min

for a network with 150 nodes. We then describe a series of

three improvements of the model. For each improvement,

we prove that the improved model is tighter than the initial

model. We then finally present the performance results of

the three improved models along with the initial model over

eight networks of various sizes. The 150-node network now

takes only 5 s to solve.

Thus, we show that tightening the ILP model can result

in significant improvements in terms of performance. This

enables practitioners to consider greater number of itera-

tions of the design for large networks, since each iteration

can be optimized in a matter of seconds. In addition,

although improvements were made in several constraints,

the overall model is still not tight. Further improvements

are possible to increase performance even further. Addi-

tionally, the model can be extended in the future to include

looped networks and/or consider scheduling of the water

distribution.
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